Sample Compression for Multi-label Concept Classes

نویسندگان

  • Rahim Samei
  • Pavel Semukhin
  • Boting Yang
  • Sandra Zilles
چکیده

This paper studies labeled sample compression for multi-label concept classes. For a specific extension of the notion of VC-dimension to multi-label classes, we prove that every maximum multilabel class of dimension d has a sample compression scheme in which every sample is compressed to a subset of size at most d. We further show that every multi-label class of dimension 1 has a sample compression scheme using only sets of size at most 1. As opposed to the binary case, the latter result is not immediately implied by the former, since there are multi-label concept classes of dimension 1 that are not contained in maximum classes of dimension 1.

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Unlabeled Compression Schemes for Maximum Classes,

Maximum classes of domain size n and VC dimension d have ( n ≤d ) concepts, and this is an upper bound on the size of any such class. We give a compression scheme for any maximum class that represents each concept by a subset of up to d unlabeled domain points and has the property that for any sample of a concept in the class, the representative of exactly one of the concepts consistent with th...

متن کامل

Bidirectional Semi-supervised Learning with Graphs

We present a machine learning task, which we call bidirectional semi-supervised learning, where label-only samples are given as well as labeled and unlabeled samples. A label-only sample contains the label information of the sample but not the feature information. Then, we propose a simple and effective graph-based method for bidirectional semisupervised learning in multi-label classification. ...

متن کامل

Labeled Compression Schemes for Extremal Classes

It is a long-standing open problem whether there exists a compression scheme whose size is of the order of the VapnikChervonienkis (VC) dimension d. Recently compression schemes of size exponential in d have been found for any concept class of VC dimension d. Previously, compression schemes of size d have been given for maximum classes, which are special concept classes whose size equals an upp...

متن کامل

Multi-label classification of emotions in music

This paper addresses the problem of multi-label classification of emotions in musical recordings. The data set contains 875 samples (30 seconds each). The samples were manually labelled into 13 classes, without limits regarding the number of labels for each sample. The experiments and the results are discussed in this paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014